Lecture by Dr. Rajesh K. Maurya

Neural Representation of AND, OR, NOT, XOR and XNOR Logic Gates

(Perceptron Algorithm)

Inputs Weights

—_—
X1 o
xZ
Activation
Sum .
function
0 I

x o
n

Note: The Perceptron algorithm states that:
Prediction (y*) =1 1if Wx+b >0 and o if Wx+b < 0

Also, the steps in this method are very similar to how Neural Networks learn, which is as
follows;

 Initialize weight values and bias

o Forward Propagate

o Check the error

o Backpropagate and Adjust weights and bias

e Repeat for all training examples
Now that we know the steps, let’s get up and running;:
AND Gate

From our knowledge of logic gates, we know that an AND logic table is given by the diagram
below

https://www.rajeshmaurya.in Deep Learning

https://www.rajeshmaurya.in/

Lecture by Dr. Rajesh K. Maurya

A
AND '— AB
B

- = o ol
= o= O

- O O o|c

AND Gate
The question is, what are the weights and bias for the AND perceptron?

First, we need to understand that the output of an AND gate is 1 only if both inputs (in this
case, x1 and x2) are 1. So, following the steps listed above;

Row 1

o From wi1*x1+w2*x2+b, initializing w1, w2, as 1 and b as —1, we get;
x1(1)+x2(1)-1

o Passing the first row of the AND logic table (x1=0, x2=0), we get;
0+0—1=—1

o From the Perceptron rule, if Wx+b<o0, then y =0. Therefore, this row is correct, and no
need for Backpropagation.

Row 2
o Passing (x1=0 and x2=1), we get;
O+1—-1=0

o From the Perceptron rule, if Wx+b<o, then y" =0. This row is correct, as the output is 0
for the AND gate.

o From the Perceptron rule, this works (for both row 1, row 2 and 3).
Row 4

o Passing (x1=1 and x2=1), we get;
1+1-1=1

e Again, from the perceptron rule, this is still valid.

https://www.rajeshmaurya.in Deep Learning

https://www.rajeshmaurya.in/

Lecture by Dr. Rajesh K. Maurya

Therefore, we can conclude that the model to achieve an AND gate, using the Perceptron
algorithm is;

X1+x2—1

OR Gate

OR Gate
From the diagram, the OR gate is 0 only if both inputs are o.
Row 1
o From wix1+w2x2+b, initializing w1, w2, as 1 and b as —1, we get;
x1(1)+x2(1)-1
o Passing the first row of the OR logic table (x1=0, x2=0), we get;
0+0—-1 = —1
o From the Perceptron rule, if Wx+b<o, then y" =0. Therefore, this row is correct.
Row 2
o Passing (x1=0 and x2=1), we get;

O+1—-1=0

https://www.rajeshmaurya.in Deep Learning

https://www.rajeshmaurya.in/

Lecture by Dr. Rajesh K. Maurya

o From the Perceptron rule, if Wx+b <= 0, then y " =0. Therefore, this row is incorrect.

o So we want values that will make inputs x1=0 and x2=1 give y" a value of 1. If we change
w2 to 2, we have;

o+2-1=1
o From the Perceptron rule, this is correct for both the row 1 and 2.
Row 3
o Passing (x1=1 and x2=0), we get;
1+0-1=0
o From the Perceptron rule, if Wx+b <= 0, then y"=0. Therefore, this row is incorrect.
o Since it is similar to that of row 2, we can just change w1 to 2, we have;
2+0-1=1
o From the Perceptron rule, this is correct for both the row 1, 2 and 3.
Row 4
o Passing (x1=1 and x2=1), we get;
2+2-1=3
e Again, from the perceptron rule, this is still valid. Quite Easy!

Therefore, we can conclude that the model to achieve an OR gate, using the Perceptron
algorithm is;

2x1+2x2—1

https://www.rajeshmaurya.in Deep Learning

https://www.rajeshmaurya.in/

Lecture by Dr. Rajesh K. Maurya

-1

x1 OR Y

NOT Gate
NOT
(Inverter)
input output
A—] 08
A B
0 1
1 0
NOT Gate

From the diagram, the output of a NOT gate is the inverse of a single input. So, following the
steps listed above;

Row 1

o From wix1+b, initializing w1 as 1 (since single input), and b as —1, we get;
x1(1)-1

o Passing the first row of the NOT logic table (x1=0), we get;

0—1=-1

https://www.rajeshmaurya.in Deep Learning

https://www.rajeshmaurya.in/

Lecture by Dr. Rajesh K. Maurya

o From the Perceptron rule, if Wx+b<o0, then y =0. This row is incorrect, as the output is 1
for the NOT gate.

e So we want values that will make input x1=0 to give y" a value of 1. If we change b to 1, we
have;

0+1=1

o From the Perceptron rule, this works.
Row 2

o Passing (x1=1), we get;
1+1=2

o From the Perceptron rule, if Wx+b > 0, then y " =1. This row is so incorrect, as the output
is o for the NOT gate.

e So we want values that will make input x1=1to give y" a value of 0. If we change w1 to —1,
we have;

—1+1=0

o From the Perceptron rule, if Wx+b < 0, then y " =0. Therefore, this works (for both row 1
and row 2).

Therefore, we can conclude that the model to achieve a NOT gate, using the Perceptron
algorithm is;

—X1+1

NOR Gate

https://www.rajeshmaurya.in Deep Learning

https://www.rajeshmaurya.in/

Lecture by Dr. Rajesh K. Maurya

A
—A+B
B

Out

- = o o|>»

- O = O|@

oo o =

NOR Gate
From the diagram, the NOR gate is 1 only if both inputs are o.
Row 1

e From wix1+w2x2+b, initializing w1 and w2 as 1, and b as —1, we get;
x1(1)+x2(1)-1

o Passing the first row of the NOR logic table (x1=0, x2=0), we get;
0+0—-1 = —1

o From the Perceptron rule, if Wx+b<o0, then y"=0. This row is incorrect, as the output is 1
for the NOR gate.

o So we want values that will make input x1=0 and x2 = 0 to givey" a value of 1. If we
change b to 1, we have;

0+0+1 =1

o From the Perceptron rule, this works.
Row 2

o Passing (x1=0, x2=1), we get;
O+1+1=2

o From the Perceptron rule, if Wx+b > 0, then y " =1. This row is incorrect, as the output is 0
for the NOR gate.

e So we want values that will make input x1=0 and x2 = 1 to give y" a value of 0. If we
change w2 to —1, we have;

O0—1+1=0

e From the Perceptron rule, this is valid for both row 1 and row 2.

https://www.rajeshmaurya.in Deep Learning

https://www.rajeshmaurya.in/

Lecture by Dr. Rajesh K. Maurya

Row 3
o Passing (x1=1, x2=0), we get;
1+0+1 =2

o From the Perceptron rule, if Wx+b > 0, then y " =1. This row is incorrect, as the output is 0
for the NOR gate.

o So we want values that will make input x1=0 and x2 = 1to give y" a value of 0. If we
change w1 to —1, we have;

—1+0+1=0

o From the Perceptron rule, this is valid for both row 1, 2 and 3.
Row 4

o Passing (x1=1, x2=1), we get;
-1-1+1 = -1

o From the Perceptron rule, this still works.

Therefore, we can conclude that the model to achieve a NOR gate, using the Perceptron
algorithm is;

-X1-x2+1

x1 NOR Y

NAND Gate

https://www.rajeshmaurya.in Deep Learning

https://www.rajeshmaurya.in/

Lecture by Dr. Rajesh K. Maurya

A—
NAND AB

B_

A| B | Out

o[o] 1

0| 1 1

110 1

111 0

From the diagram, the NAND gate is 0 only if both inputs are 1.
Row 1

o From wix1+w2x2+b, initializing w1 and w2 as 1, and b as -1, we get;
x1(1)+x2(1)-1

o Passing the first row of the NAND logic table (x1=0, x2=0), we get;
0+0-1=-1

o From the Perceptron rule, if Wx+b<o, then y"=0. This row is incorrect, as the output is 1
for the NAND gate.

e So we want values that will make input x1=0 and x2 = 0 to give y" a value of 1. If we
change b to 1, we have;

0+0+1 =1

o From the Perceptron rule, this works.
Row 2

o Passing (x1=0, x2=1), we get;
O+1+1=2

o From the Perceptron rule, if Wx+b > 0, then y " =1. This row is also correct (for both row 2
and row 3).

Row 4
o Passing (x1=1, x2=1), we get;
1+1+1 =3

« This is not the expected output, as the output is 0 for a NAND combination of x1=1 and
X2=1.

https://www.rajeshmaurya.in Deep Learning

https://www.rajeshmaurya.in/

Lecture by Dr. Rajesh K. Maurya

e Changing values of w1 and w2 to -1, and value of b to 2, we get;
-1-1+2 =0
o It works for all rows.

Therefore, we can conclude that the model to achieve a NAND gate, using the Perceptron
algorithm is;

-X1-x2+2

x1 NAND Y

Hidden layer(s)

Output layer

Difference’n
lesired values

v L .
",
Backprop output layer

https://www.rajeshmaurya.in Deep Learning

https://www.rajeshmaurya.in/

Lecture by Dr. Rajesh K. Maurya

The Error Backpropagation Training Algorithm (EBPTA), also known as backpropagation, is a widely
used training algorithm for feedforward neural networks.

It is a supervised learning algorithm that aims to minimize the difference between the actual and
expected output of the network, which is called the error.

The basic idea of backpropagation is to compute the gradient of the error with respect to the weights
of the network, and then use this gradient to update the weights in a way that reduces the error.

This is done by propagating the error backwards through the network and computing the derivative of
the error with respect to each weight.

The backpropagation algorithm consists of the following steps:

1. Forward Pass: The input vector is fed into the network, and the activation values of each neuron
in each layer are computed, starting from the input layer and progressing through the hidden
layers to the output layer.

2. Error Computation: The error of the network is computed as the difference between the actual
output of the network and the expected output for the given input.

3. Backward Pass: The error is then propagated back through the network from the output layer
to the input layer. This is done by computing the error gradient with respect to each weight in
each layer, using the chain rule of calculus.

4. Weight Update: The weights in each layer are then updated based on the error gradient
computed in the previous step. The update rule typically involves multiplying the gradient by a
learning rate, and subtracting the result from the current weight value.

5. Repeat: The above steps are repeated for multiple input/output pairs until the network
converges to a solution.

The backpropagation algorithm can be computationally expensive, especially for large networks with
many layers and neurons. Therefore, there have been several variations and optimizations of the
algorithm proposed over the years to improve its efficiency and convergence properties. Some of these
include the use of momentum, adaptive learning rates, and batch training.

Despite its limitations, the backpropagation algorithm remains one of the most widely used and
successful training algorithms for neural networks. It has been used in a wide range of applications,
including speech recognition, computer vision, and natural language processing.

AND Problem

https://www.rajeshmaurya.in Deep Learning

https://www.rajeshmaurya.in/

Lecture by Dr. Rajesh K. Maurya

g

Colubion'~ Truth ed,l.u‘fw AND Fuachon With bipo
i Tuputs aud :

' s
| | ~
) = -
= | -
-] =[N
?exc«.)fbm Nehoork,
(1/ b
u,
e 3§ -fu0-
— &% il
" [Wirez i o

https://www.rajeshmaurya.in

Deep Learning

https://www.rajeshmaurya.in/

Lecture by Dr. Rajesh K. Maurya

Netoorks Jor Bipolex Tpus s Tarels
Third. u,tPchvmv/ E\ | 'l_J

Caludate thae Nof?wrd;-
e Finz be Wotiha
= 0 +OC) +)
=
i || -t
b - a Uubk,)a;étl M“\Wuclwae »shzzu.u‘L
T eld) + REX; wa
Povcch oo Nematre J (il
ex(«+ etwoo Vo) k) 5 Mamlj’
g ? + O
. [Y =W1.L0l°\)+°(§’(>_
Z a f\d'm): ° 3‘».:0 4 \Q- +U’(")(’)
x& 5 <o) = ‘o(al.()\l.-({)
= 0y (V¢
w,- - ’
;\‘;j“ =y =3 b
- ' —
Iw\P et AND #MW‘MEKCEPTESEI Netooks 4«:»/ B»pokx lnpufs kquots

3 i
e Trath bable for AND Juuchan Wik bifslar foath _Brj}gc Fekhn f e J
i SupeaLh g (azmgm Net Bup

I‘ YL -t" \2 30‘_— b" Wx.-\-u,.x,_
I \ g =k ;('X—') +W)eE
] = =2 "
-l | =L e a’ff(\am)"l
: ot }_&=t_J Hunte Wa L.tuwde is Mf\'oluird_
-l = =i b EETal | t"’
?mok‘bm Netoork, /

O U T Oy . law 10 -

https://www.rajeshmaurya.in Deep Learning

https://www.rajeshmaurya.in/

Lecture by Dr. Rajesh K. Maurya

Cufﬂuh?Tlh¢ -

by wxtVWar,= 0 (8=0)
now (<) + 100)+ (1), = 0

25| ‘f"l"h-.o

@ el s

X,_=7.') Xp=m24| =-|

Y=5) s34y

https://www.rajeshmaurya.in

Now e EVRM f.w e dicision LM? o

‘ Conctusions o Tt

|

QR

is clean Powe above &'bm";",{ 3

lre Hlat u :W f«'d.:;m
Y&kn(y?fﬁs wTﬁQ

Deep Learning

https://www.rajeshmaurya.in/

